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a b s t r a c t

In this work, the design of europium (III) complexes exhibiting high quantum yield was accomplished
by a systematic study using factorial design and the Sparkle/AM1 model. Eight new complexes derived
from the Eu(acac)3.o-phen complex (acac = acetylacetonate acid and o-phen = 1,10-phenantroline) were
generated through a 23 full factorial design. The ground state geometries of the eight new complexes
were predicted using the Sparkle/AM1 model. The singlet and triplet excited levels were calculated using
eywords:
esign
parkle/AM1
uropium
uminescence

the INDO/S-CIS method, implemented in ZINDO program. Energy transfer rates and quantum yields for
each one of the new complexes were calculated using the theoretical model based on the theory of
the transitions 4f–4f (Spectrochim. Acta Part A, 1998, 54, 1593). The results strongly suggest that the
europium complexes with �-diketone ligands might display a quantum yield increment when strongly
electron acceptor groups are added to one of the �-diketone extremities and strongly electron donor
groups are added to the opposite side. From the factorial design proposed in this work it was possible to

uantu
project complexes with q

. Introduction

The late 1990s witnessed an abrupt rise in the research on
anthanides owing to studies of lanthanide complexes as func-
ional elements in the so-called light conversion molecular devices
LCMDs) [1]. Nowadays, lanthanide compounds find applications in

any distinct devices such as chemical sensors, diagnostic systems,
uminescent materials, and liquid crystals, to name a few [1–8].
he main advantages of luminescent lanthanides complexes with
helating ligands in comparison to traditional organic fluorophores
re the long luminescence lifetimes in addition to narrow emission
ands and low concentration quenching.

The development of complexes of lanthanide ions as efficient
CMDs has become an important theme in coordination chem-
stry, and in this context the theoretical strategy have proven to
e successful in the design of efficient luminescent devices with

anthanide complexes [9,10]. From a theoretical point of view, pre-
ious works stated that the task of designing new efficient LCMDs

an be accomplished by three steps: (1) optimization of the ground
tate geometry; (2) the calculation of the electronic excited states;
nd (3) the prediction of the emission quantum yield, q [11,12]. The
ast step is carried out by the calculation of the energy transfer rates
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m yields up to 70%.
© 2010 Elsevier B.V. All rights reserved.

between the excited states of the lanthanide ion and the excited
states of the ligands, followed by numerically solving a system of
rate equations to give q [11].

The first step is very time-consuming compared to the two last
ones but a careful geometry optimization is crucial for the quality of
the prediction of spectroscopic properties. Ab initio and DFT calcula-
tions have been used by some research groups to predict the ground
state geometries of lanthanide complexes [13–16]. In this context
the use of the effective core potentials (ECP) [17,18] makes possible
the calculation of the ground state geometry of the lanthanide com-
plexes with high accuracy. However, application of this method to
large systems is not convenient because a high computational time
is required [19,20].

Semiempirical models, on the other hand, demand a lower
computational effort and were found to provide an interesting
alternative for the modeling of these compounds [21–24]. In par-
ticular, the semiempirical Sparkle/AM1 [25–31] and Sparkle/PM3
[32] models were developed for the calculation of the ground state
geometries of the lanthanide complexes with great accuracy. Addi-
tionally the Sparkle/AM1 model is quite competitive with present
day ab initio/ECP calculations, while being hundreds of times faster
[25]. This feature can be very useful if one is interested in apply-

ing multivariate statistical techniques such as two-level factorial
design [33,34], where several lanthanide complexes can be inves-
tigated.

In this work we applied the Sparkle/AM1 model to the design
of novel Eu complexes with substituted �-diketonate ligands,

dx.doi.org/10.1016/j.jphotochem.2010.11.011
http://www.sciencedirect.com/science/journal/10106030
http://www.elsevier.com/locate/jphotochem
mailto:rfreire@ufs.br
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Fig. 1. Schematic three dimensional representation of the crystallographic struc-
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ure of the tris(acetylacetonate)(1,10-phenanthroline)-europium(III) obtained from
ambridge Structural Database 2008 [37–39].

hose substitution followed a two-level factorial design. Among
he reasons for the choice of �-diketonates are the applications of
-diketonate lanthanide complexes as emissive materials in OLEDs.
hese complexes are thermodynamically stable and highly soluble
r volatile lanthanide complexes. Our major aim is to assist the
evelopment of a complex with optimized luminescent properties,
voiding a high number of practical experiments.

. Computational procedure

Owing to potential applications in clinical analyses [35,36],
�-diketone lanthanide complex (tris(acetylacetonate)(1,10-

henanthroline)-europium(III), Fig. 1 was chosen in this work as
substrate to systematic substitutions according to a 23 facto-
ial planning. The initial structure was obtained from Cambridge
tructural Database (CSD) [37–39]. The coordination polyhedron
round the lanthanide ion in this complex is composed by six oxy-
en atoms from acetylacetonate ligands and two nitrogen atoms
rom 1,10-phenanthroline ligand.

ig. 2. Nomenclature used for the eight europium (III) complexes generated by the 23 fa
u3+ complexes investigated in this work.
otobiology A: Chemistry 217 (2011) 389–394

The eight new structures resulting from 23 factorial planning
were generated considering substitutions at R1, R2 and R3 posi-
tions of the acetylacetonate molecule, Fig. 2. The H atom at the R2
position was replaced by CH3CH2 group in order to ensure a higher
solubility in organic solvents. Donor and acceptor groups were cho-
sen for substitution at the other positions in order to evaluate the
effect of the chemical nature of the substituent on the energy trans-
fer rate as well as on the quantum yield of lanthanide emission:
NO2 (strong acceptor) and NH2 (strong donor) at R1 position and
CF3 (strong acceptor) and CH3 (weak donor) at R3 position.

The resulting structures were subjected to calculation using the
Sparkle model [25], implemented in the MOPAC2007 package [40].
The keywords used in the calculation reported in this work were:
AM1; PRECISE; BFGS; GNORM = 0.25; SCFCRT = 1.D-10 (to increase
the SCF convergence criterion) and XYZ (for Cartesian coordinates).

The ground state geometries predicted by Sparkle/AM1 model
[25] were used as input in the calculation of the singlet and triplet
excited states using configuration interaction single (CIS) based
on the intermediate neglect of differential overlap/spectroscopic
(INDO/S) technique [41,42] implemented in ZINDO program [43].
For the energy transfer rates between the ligands and the lan-
thanide ion and the emission quantum yield calculation we used
the theoretical model based on the theory of the transitions 4f–4f
[11].

Some restrictions were taken into account in the calculation
of the energy transfer rates and in the emission quantum yields.
These restrictions were: (i) the oscillator strength of the transi-
tions should be larger than 0.2; (ii) it was considered only the
triplet state with the lowest energy, which is related to the sin-
glet state chosen in item i; (iii) the singlet state must have energy
below 40,000.00 cm−1; and (iv) in the calculation of the energy
transfer rate, the singlet (S) or triplet (T) states and the 5D0 or 5D1
levels should present an energy difference �E = E(S or T)−E(5Dj)
below 9000 cm−1. These restrictions were based on experimental
data (electronic spectra and energy transfer rate) taken from sev-
eral lanthanide compounds found in the literature. The mechanism
of energy transfer from the ligand triplet state to the 5L6 and 5D1
excited state of europium (III) ion adopted here can be observed in
Fig. 3.
The Jablonski diagram presented in Fig. 3 shows the probable
luminescence mechanism. The WET and WBT symbols represent
the energy transfer and back-transfer rates. The calculate values
of these quantities are presented in Table 1. The ˚ and K sym-
bols represent the non-radiative decay rates. Typical values of the

ctorial design and schematic representation of the precursor ligand present in the
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Fig. 3. Schematic representation of the energy transfer mechani

emaining transfer rates were assumed to be identical to those
ound for coordination compounds, namely, ˚ = 104, ˚(1) = 106,

(2) = 108, and ˚(3) = 105 s−1 [44].

. Results and discussions

.1. Analysis of the energy transfer rates

Singlet and triplet energies for all complexes studied are pre-
ented in Table 1.
The main effects as well as the interaction effects obtained from
he factorial planning can be observed in Fig. 4. The main effect
1 is associated with the change of the NO2 by NH2 in the R1
osition; the main effect R2 is associated with the change of the
ydrogen by CH3CH2 in the R2 position and the main effect R3 is

able 1
riplet energies and energies transfer and retro-transfer rates obtained for the eight stud

Ligand states (cm−1) 4f states (cm−1) RL
a (Å) �E

Comp01 Singlet (38515)
Triplet (27491)→ 5D1 (19070) 4.478 842
Triplet (27491)← 5D4 (27600) 4.478 108

Comp02 Singlet (38843)
Triplet (30183)→ 5D1 (19070) 3.818 111
Triplet (30183)→ 5D4 (27600) 3.818 258

Comp03 Singlet (37181)
Triplet (30816)→ 5D1 (19070) 3.641 117
Triplet (30816)→ 5D4 (27600) 3.641 321

Comp04 Singlet (35779)
Triplet (27703)→ 5D1 (19070) 5.0 863
Triplet (27703)→ 5D4 (27600) 5.0 103

Comp05 Singlet (37065)
Triplet (27278)→ 5D1 (19070) 4.02 820
Triplet (27278)← 5D4 (27600) 4.02 322

Comp06 Singlet (37726)
Triplet (25278)→ 5D1 (19070) 4.149 620
Triplet (25278)← 5L6 (25325) 4.149 47

Comp07 Singlet (35783)
Triplet (28465)→ 5D1 (19070) 3.901 939
Triplet (28465)→ 5D4 (27600) 3.901 865

Comp08 Singlet (35799)
Triplet (26512)→ 5D1 (19070) 3.999 744
Triplet (26512)← 5G6 (26752) 3.999 240

a RL is the distance from the donor state located at the organic ligands and the Eu3+ ion
d to treat the energy transfer process in the studied complexes.

associated with the change of the CH3 by CF3 in the R3 position.
The interaction effects are associated with simultaneous changes
in respective positions. For example the interaction effect R1R3 is
associated with the interaction between the simultaneous substi-
tutions of the NO2 by NH2 in the R1 position and of the CH3 by CF3
in the R3 position. The same observation can be used in the analyses
of Fig. 6.

It can be observed that the main effect R3 is the most important
one and that the interaction effects R1R2 and R1R2R3 are small
compared to the others. As the results were obtained via quantum

chemistry calculations, it was not possible to have a measure of the
pure error. Thus all the calculated effects were considered in the
analysis.

Energy transfer rates obtained for all complexes can be seen in
Fig. 5, which shows the effect of different levels of the factors on

ied complexes generated by the 23 factorial design.

(cm−1) Transfer rate (s−1) (WET) Back-transfer rate (s−1) (WBT)

1.4 3.81×107 1.43×10−10

.6 1.654×105 9.86×104

13 1.022×107 0
3 2.908×106 13.11

46 1.809×106 0
6 3.3×106 0.731

3 1.8×107 2.45×10−11

7.68×105 4.70×105

8 3.482×108 3.601×10−9

3.148×105 6.797×104

8 8.168×108 1.162×10−4

2.52×106 2×106

5 7.886×107 2.861×10−12

3.3×106 5.36×104

2 7.123×108 2.833×10−7

7.58×105 2.42×105

nucleus.
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Table 2
Quantum yields, populations of 5D0 level of europium (III) ion and populations of
ground state (S0) of the ligands for all complexes generate by the 23 factorial design.

Population of 5D0 state Ground state population (S0) Quantum yield (%)

Comp01
0.84745 0.15131 56.01

Comp02
0.79868 0.19984 39.96

Comp03
0.69772 0.30039 23.23

Comp04
0.81983 0.17890 45.83

Comp05
0.87192 0.12685 68.74

Comp06
0.87370 0.12507 69.86

Comp07
Fig. 4. Effects obtained for energy transfer rates.

he energy transfer rate. It is clear that the energy transfer rate from
he triplet state of the ligand to 5D1 excited state of europium (III)
on is considerably increased by the presence of CF3 at R3 position.
lso, the substitution of NO2 by NH2 at the R1 position generally

ncreases the energy transfer rates, except for the structure with H
t R2 and CH3 at R3 positions. Finally, it was found that the presence
f CH2CH3 at R2 only favors the energy transfer rate if R1 and R3
osition were occupied by NH2 and CH3 groups, respectively.

In summary, combination of CF3 group (strong acceptor) at R3
osition and the presence of the NH2 group (strong donor) at R1
osition greatly favors the energy transfer rate. It is important to
mphasize that the presence of a hydrogen atom at R2 position
lso contributes to an increase in the energy transfer rates in most
f the cases. Therefore, the highest energy transfer rate is presented
y the complex labelled Comp06, which has NH2, H and CF3 groups
t R1, R2 and R3 positions.

.2. Quantum yield analyses

5
Quantum yield values, populations for D0 level of europium
III) ion and for the ground state (S0) of the ligands for all com-
lexes generated by factorial planning 23 are presented in Table 2.

n order to support the discussion on those results, we shall rely on
he results of the factorial planning.

ig. 5. Graphic visualization of the influence of the substitutes groups in R1, R2 and
3 positions in the energy transfer rates from triplet to 5D1 (Eu3+) state. All values
re divided by 106.
0.86194 0.13678 63.02
Comp08

0.86430 0.13432 64.34

The main effects and the interaction effects of the substitutions
on the quantum yields from the factorial planning are represented
graphically in Fig. 6. Analogously to the energy transfer rate anal-
ysis, the main effect R3 is the most significant one, but in this case
R1R2 and R1R2R3 interaction effects are higher than the others. All
the main and interaction effects were used for the analysis for the
same reasons stated for the energy transfer rate.

The effect of the substitution of NH2 by NO2 depends on the
nature of the substituents present at the remaining positions, as
evidenced by the graphical visualization of the effects, Fig. 7. For
instance, when the NH2 substitution by NO2 takes place in a sub-
strate containing H and CH3 at R2 and R3 positions respectively, the
quantum yield increases by 16%. On the other hand for a substrate
containing CH3CH2 and CH3 at R2 and R3 positions, the quantum
yield increase upon NH2 substitution was found to be 22.6%. Nev-
ertheless the highest quantum yield can be found when H and CF3
groups are present at the R2 and R3 positions, respectively.

Analogously to the trend observed in the transfer rate results,
the presence of CF3 group at R3 position plays a similar role in deter-
mining the magnitude of quantum yield, since a significant increase
in quantum yield was observed for all CF3-containing structures.
In contrast to the CF3 role, the presence of CH3CH2 at R2 position
barely affects the quantum yield: this substitution can be advan-

tageous only if the structure contains NH2 at R1 and CH3 at R3
position. Quantum yield analysis also pointed out that structures
bearing a strong donor such as NH2 will exhibit a high quantum
yield. This analysis reproduces the general conclusion outlined

Fig. 6. Effects obtained for quantum yields.
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ig. 7. Graphic visualization of the influence of the substitutes groups in R1, R2 and
3 positions in the quantum yields.

rom energy transfer rate: high quantum yields are favoured by
ombination of a strong acceptor at R3 and strong donor at R1.
owever, the substitution of NH2 by NO2 almost had no effect on

he quantum yield whatever the group is at R2 (H or CH2CH3).

. Conclusions

A comparative analysis of the results indicates the possibility
f obtaining structures with simultaneously high energy transfer
ates and quantum yields based on substitutions at R1 position of
-diketone ligands by a strong acceptor and at R3 by a strong donor.
ccording to the 23 factorial planning results, the less significant
ubstitution was at R2 position. The only significant effect of R2
ubstitution was the slight increase in quantum yield for the case
f H substituent. Although it may seem disadvantageous to sub-
titute H for CH3CH2 considering the quantum yield, the solubility
n organic solvents is expected to increase upon the substitution.

oreover, as the difference in the quantum yield for the most effi-
ient complexes with H (Comp06) and CH3CH2 (Comp08) at R2
osition is only 5.6%, the comp08 complex can be a suitable choice
o deposition in the form of films. Finally, as the comp06 struc-
ure exhibited a quantum yield close to 70%, it would be a good
andidate to application in light converting molecular devices.
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